Hypergeometric series with ap-adic variable

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SUMMATION IDENTITIES AND SPECIAL VALUES OF HYPERGEOMETRIC SERIES IN THE p-ADIC SETTING

We prove hypergeometric type summation identities for a function defined in terms of quotients of the p-adic gamma function by counting points on certain families of hyperelliptic curves over Fq . We also find certain special values of that function.

متن کامل

Theta hypergeometric series

We formulate general principles of building hypergeometric type series from the Jacobi theta functions that generalize the plain and basic hy-pergeometric series. Single and multivariable elliptic hypergeometric series are considered in detail. A characterization theorem for a single variable totally elliptic hypergeometric series is proved.

متن کامل

Arithmetic hypergeometric series

The main goal of our survey is to give common characteristics of auxiliary hypergeometric functions (and their generalisations), functions which occur in number-theoretical problems. Originally designed as a tool for solving these problems, the hypergeometric series have become a connecting link between different areas of number theory and mathematics in general. Bibliography: 183 titles.

متن کامل

Basic Hypergeometric Series

Abstract. We compute the inverse of a specific infinite r-dimensional matrix, thus unifying multidimensional matrix inversions recently found by Milne, Lilly, and Bhatnagar. Our inversion is an r-dimensional extension of a matrix inversion previously found by Krattenthaler. We also compute the inverse of another infinite r-dimensional matrix. As applications of our matrix inversions, we derive ...

متن کامل

Hypergeometric functions in one variable

This is a Fuchsian equation of order n with singularities at 0, 1,∞. The local exponents read, 1− β1, . . . , 1− βn at z = 0 α1, . . . , αn at z =∞ 0, 1, . . . , n− 2, −1 + ∑n 1 (βi − αi) at z = 1 When the βi are distinct modulo 1 a basis of solutions at z = 0 is given by the functions z1−βi nFn−1 ( α1 − βi + 1, . . . , αn − βi + 1 β1 − βi + 1, ..∨.., βn − βi + 1 ∣∣∣∣ z) (i = 1, . . . , n). Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1981

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1981.94.265